

Salah Belazreg

Professeur agrégé et docteur en physique, il enseigne au lycée Camille Guérin à Poitiers. Il a enseigné la biophysique en classes préparatoires aux concours de Médecine. Il est aussi interrogateur en classes préparatoires scientifiques.

Rémy Perdrisot

Ancien élève de l'ENS-ULM, professeur de biophysique, assesseur du Doyen de la faculté de médecine de Poitiers, responsable du premier cycle.

Jean-Yves Bounaud

Docteur en sciences, docteur en pharmacie et maître de conférences à la faculté de médecine de Poitiers.

Le pictogramme qui figure ci-contre mérite une explication. Son objet est d'alerter le lecteur sur la menace que représente pour l'avenir de l'écrit,

représente pour l'avenir de l'écrit, particulièrement dans le domaine de l'édition technique et universitaire, le développement massif du photocopillage.

Le Code de la propriété intellectuelle du 1^{er} juillet 1992 interdit en effet expressément la photocopie à usage collectif sans autori-

sation des ayants droit. Or, cette pratique s'est généralisée dans les établissements d'enseignement supérieur, provoquant une baisse brutale des achats de livres et de revues, au point que la possibilité même pour les auteurs de créer des œuvres

droit de copie (CFC, 20, rue des Grands-Augustins, 75006 Paris).

© EdiScience, 2006, 2009, 2010, 2014, 2017

DANGER

EdiScience est une marque de Dunod Éditeur, 11 rue Paul Bert, 92240 Malakoff www.dunod.com

ISBN 978-2-10-076326-9

Le Code de la propriété intellectuelle n'autorisant, aux termes de l'article L. 122-5, 2° et 3° a), d'une part, que les « copies ou reproductions strictement réservées à l'usage privé du copiste et non destinées à une utilisation collective » et, d'autre part, que les analyses et les courtes citations dans un but d'exemple et d'illustration, « toute représentation ou reproduction intégrale ou partielle faite sans le consentement de l'auteur ou de ses ayants droit ou ayants cause est illicite » (art. L. 122-4).

Cette représentation ou reproduction, par quelque procédé que ce soit, constituerait donc une contrefaçon sanctionnée par les articles L. 335-2 et suivants du Code de la propriété intellectuelle.

Avant-propos

Le présent ouvrage « tout-en-un » est la 4^e édition du manuel de biophysique de la collection 100 % 1^{re} année Santé, paru en janvier 2006. Avec le manuel de Physique de la même collection, ils couvrent la totalité du programme de la rentrée 2017, mis en place lors de la réforme de la PACES (PAES) L1 Santé. Il est complètement revu et corrigé.

Il s'adresse principalement aux étudiants en 1^{re} année santé (PACES) pour la préparation des concours Médecine-Pharmacie-Dentaire-Sage Femme mais il intéressera également les étudiants en classes préparatoires Bio-Véto et Agro ainsi que les étudiants en L1 Sciences de la vie.

Chaque chapitre propose:

- un cours exposé de façon détaillée,
- des exemples concrets et quelques applications médicales pour mieux approfondir le cours,
- des exercices et QCM de difficultés variées,
- des corrections détaillées et comprenant de nombreuses illustrations,
- enfin, des épreuves issues des concours de PACES.

On espère que cet ouvrage, fruit d'une longue expérience, rédigé avec beaucoup d'attention, apporte une aide efficace aux étudiants dans la préparation de leurs examens et concours.

Remerciements

Nous remercions tout particulièrement Monsieur Marc Violino, ancien professeur en classes préparatoires aux grandes écoles au lycée Camille Guérin, ainsi que le Dr Frédérique Belazreg, médecin gériatre, pour leur relecture attentive de la plupart des chapitres de cet ouvrage et leurs remarques judicieuses.

Nos remerciements vont également au Pr Laurence Bordenave, de la faculté de médecine de Bordeaux, au Dr Damien Huglo, de la faculté de médecine de Lille, pour les annales qu'ils nous ont fournies, ainsi qu'au Dr Laurent Vervueren, médecin nucléaire au CHU de Poitiers, pour l'iconographie IRM.

Nos remerciements vont également aux éditions Dunod pour le soin et la présentation apportés à la réalisation de cet ouvrage et plus particulièrement à l'équipe éditoriale. Que les lecteurs, collègues enseignants et étudiants, qui voudront bien nous formuler leurs remarques constructives et critiques, ou nous présenter leurs suggestions susceptibles d'améliorer cet ouvrage, en soient par avance remerciés.

Poitiers, mars 2017

Table des matières

Avant-propos	V
Chapitre 1	
Généralités sur les solutions aqueuses	1
■ 1. Étude des solutions	1
■ 2. Électrolytes	5
Questions à choix multiples	12
Corrigés	15
Chapitre 2	
Thermodynamique chimique	20
■ 1. Les équilbres physico-chimiques	20
2. Fonctions thermodynamiques	22
■ 3. Expressions du potentiel chimique	25
Exercices	26
Questions à choix multiples	27
Corrigés	29
Chapitre 3	
Propriétés acido-basiques des solutions	35
■ 1. Acides et bases en solution aqueuse	35
■ 2. pH d'une solution aqueuse	38
3 Réactions acide-base : courbes de titrages	44

■ 4. Les systèmes tampons	45
■ 5. Diagramme de Davenport et troubles acido-basiques	47
Exercices	50
Questions à choix multiples	52
Corrigés	54
Chapitre 4	
Oxydo-réduction	62
■ 1. Définition	62
■ 2. Potentiel d'oxydo-réduction	65
Exercices	72
Questions à choix multiples	72
Corrigés	74
Chapitre 5	
Transports transmembranaires	79
■ 1. Généralités sur les phénomènes de transport	79
2. Propriétés colligatives	85
■ 3. Phénomènes électriques	93
■ 4. Ultrafiltration	97
Exercices	100
Questions à choix multiples	101
Corrigés	104
Chapitre 6	
Propriétés mécaniques des solutions	111
■ 1. Statique des fluides	111
■ 2. Dynamique des fluides	114
■ 3. Dynamique des fluides réels	115
■ 4. Les phénomènes de surface	121

4. Les réactions nucléaires provoquées

207

Exercices	209
Questions à choix multiples	211
Corrigés	217
Chapitre 10 Interactions des rayonnements avec la matière	231
■ 1. Les interactions des particules chargées avec la matière	231
\blacksquare 2. Atténuation des photons x et γ	237
■ 3. Application : la production des rayons x	243
Exercices	247
Questions à choix multiples	248
Corrigés	249
Chapitre 11 La détection des rayonnements ionisants	257
■ 1. Émulsion photographique - autoradiographie	257
■ 2. La thermoluminescence	258
■ 3. La calorimétrie	258
■ 4. L'effet cerenkov	258
■ 5. Les compteurs à gaz ou compteurs à décharge	258
■ 6. Les compteurs à scintillation	260
■ 7. Les détecteurs à semi-conducteurs	261
■ 8. Principe d'une chaîne de détection	261
■ 9. Le comptage	262
■ 10. La spectrométrie	266
Exercices	270
Questions à choix multiples	273
Corrigés	27 4

281

281

285

285

4. Effets biologiques des rayonnements ionisants	287
■ 5. Les effets déterministes	289
■ 6. Les effets stochastiques	294
Exercices	29!
Questions à choix multiples	297
Corrigés	298
Chapitre 13	
Ondes sonores et audition	304
■ 1. Propriétés des ondes sonores	304
■ 2. L'audition subjective	314
■ 3. L'audition objective	317
Exercices	323
Questions à choix multiples	324
Corrigés	329
Chapitre 14	
Optique et anomalies de la vision	333
■ 1. Les troubles dioptriques des yeux	333
■ 2. Méthodes d'examen des caractéristiques oculaires	34!
■ 3. Le rôle de la rétine dans la vision des couleurs	347
Questions à choix multiples	351
Corrigés	35!

Chapitre 12
Effets biologiques des rayonnements ionisants

■ 1. Dosimétrie des faisceaux de photons (x et γ)

■ 2. Cas des faisceaux de particules chargées

■ 3. Doses équivalente et efficace

Chapitre 15 Imagerie par isotopes radioactifs	357
■ 1. Radiopharmaceutiques	357
■ 2. Appareillages de détection	359
■ 3. Réalisation des examens scintigraphiques	361
	363
■ 4. Traitement mathématique des images numériques	
Questions à choix multiples	365 366
Corrigés	367
Chapitre 16	
Bases physiques de l'échographie, applications	368
■ 1. Propriétés physiques des ultrasons - physique acoustique	369
■ 2. Formation des échos - impédance acoustique	372
■ 3. Atténuation du faisceau ultrasonore	376
■ 4. Imagerie médicale à l'aide des ultrasons	377
■ 5. L'échographie doppler	379
Questions à choix multiples	382
Corrigés	385
Chapitre 17 Résonance magnétique nucléaire Imagerie RMN	387
■ 1. Les nombres quantiques	387
■ 2. Électromagnétisme	390
■ 3. Les bases physiques de la RMN	392
■ 4. Notions d'imagerie RMN	399
Questions à choix multiples	404
Courinée	404

Annale 1 Poitiers - Janvier 2011 407 Questions à choix multiples 407 **Corrigés** 415 Annale 2 **Poitiers - Juin 2011** 416 Questions à choix multiples 416 **Corrigés** 419 **Annale 3 Poitiers - Janvier 2012** 420 Questions à choix multiples 420 **Corrigés** 427 Index 428

Généralités sur les solutions aqueuses

Plan

bjectifs

- 1. Étude des solutions
- 2. Électrolytes

- Reconnaître un électrolyte fort d'un électrolyte faible
- Savoir calculer:
 - un taux de dissociation,
 - un coefficient d'ionisation,
 - les différentes concentrations molaires, particulaires, équivalentes, ...

L'eau est le constituant fondamental de la matière vivante; elle est indispensable à la vie. La teneur en eau d'un tissu atteste de sa vitalité et la déshydratation est un des signes les plus nets du veillissement. D'un point de vue pondéral, un adulte renferme 70 à 75 % d'eau alors que chez l'enfant jeune cette valeur peut dépasser 80 %.

Les propriétés physicochimiques particulières de la molécule d'eau en font un bon solvant biologique des composés ioniques et moléculaires.

On traitera dans ce chapitre:

- les diverses façons d'exprimer la concentration d'un constituant dans une solution ;
- les électrolytes forts et faibles.

■ 1. Étude des solutions

1.1. Étude structurale de l'eau

Structure de la molécule d'eau

La molécule d'eau H_2O est une molécule coudée et l'angle de liaison est $\widehat{HOH} = 104,5^{\circ}$. La longueur d'une liaison O - H est d = 0,96 Å.

La molécule est polaire de moment dipolaire $\mu=1,85$ D (1 D (debye) $\simeq \frac{1}{3}.10^{-29}$ C. m) (Fig. 1.1).

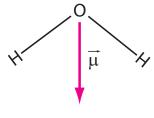


Figure 1.1

La liaison hydrogène

La liaison hydrogène (Fig. 1.2) est une liaison intermoléculaire attractive et beaucoup plus puissante que la force de Van der Waals. Sa longueur est de l'ordre de 2,5 à 3 Å.

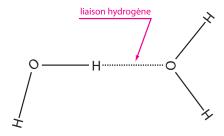


Figure 1.2

Elle est de nature électrostatique, environ 20 fois supérieure à une liaison de Van der Waals mais 20 fois inférieure à une liaison covalente.

Les trois états de l'eau

L'eau existe sous les trois états : l'état solide, liquide et gazeux.

L'existence d'une liaison hydrogène intermoléculaire entraîne des anomalies sur les propriétés physiques de l'eau. En effet, on observe une élévation des températures de fusion et d'ébullition.

Les graphes de la figure 1.3 donnent les évolutions des températures de fusion et d'ébullition de quelques composés hydrogénés de type H_2X .

Concentrations

Une solution est obtenue par dissolution d'une ou plusieurs espèces chimiques, appelées solutés, dans un solvant (généralement l'eau).

Le soluté peut être solide, liquide ou gazeux, moléculaire ou ionique.

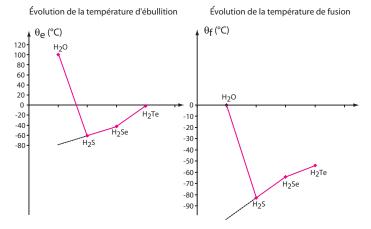


Figure 1.3

Concentration massique d'une espèce chimique

Elle représente la masse de soluté par litre de solution, soit

$$c = \frac{m}{V}$$
(m en g, V en L et c en g. L⁻¹)

■ Concentration molaire d'une espèce chimique - molarité

Elle est numériquement égale à la quantité de matière de l'espèce chimique dissoute par litre de solution, soit

$$C = \frac{n}{V}$$
(n en mol, V en L et C en mol. L⁻¹)

À noter

Si M représente la masse molaire moléculaire du soluté, alors :

$$c = C \times M$$

$$(c : \text{en g: } L^{-1}, C \text{ en mol: } L^{-1} \text{ et } M \text{ en g: } \text{mol}^{-1})$$

Concentration molale - molalité

Elle représente la quantité de matière de l'espèce chimique dissoute par unité de masse de solvant. Elle s'exprime en mol. kg⁻¹.

Concentration pondérale

Elle représente la masse de l'espèce chimique dissoute par unité de masse de solvant. Elle s'exprime en g. kg⁻¹

1.2. Fraction molaire

Pour l'espèce chimique A_i dissoute dans un solvant, on définit sa fraction molaire f_i par :

$$f_i = \frac{n_i}{\sum_{i} n_i}$$
 (4)

(toutes les espèces chimiques présentes y compris le solvant)

I 1.3. Dissolution d'un gaz dans un liquide

Considérons un gaz et un liquide de natures différentes, en équilibre dans un vase clos.

Une certaine quantité du gaz est dissoute dans le liquide ; de même, quelques molécules du liquide passent à l'état vapeur.

On définit le coefficient de solubilité s par :

$$s = \frac{c_1}{c_2}$$

 c_1 : concentration du gaz dans le liquide (masse du gaz dissoute dans l'unité de volume du liquide),

 c_2 : concentration de la phase gazeuse surmontant le liquide (masse de vapeur renfermée dans l'unité de volume du gaz).

À l'équilibre, le volume v de gaz dissous dans les conditions standard est donné par :

$$v = sP_iV$$

(Loi de Henry

où P_i représente la pression partielle du gaz en atmosphères et V le volume du liquide en litres.

1.4. Miscibilité des liquides

Un mélange de deux liquides miscibles (soluté avec solvant) sera caractérisé par le **titre** de la solution obtenue et non par la concentration.

On définit le **titre d'une solution** par le rapport de la masse du soluté à la masse totale de la solution, soit

$$\tau = 100 \times \frac{m_{\text{soluté}}}{m_{\text{solution}}}, \text{ avec } m_{\text{solution}} = m_{\text{soluté}} + m_{\text{solvant}}$$
 (5)

Deux cas peuvent se présenter :

Les liquides sont miscibles en toutes proportions.
 Le titre τ peut prendre toutes les valeurs comprises entre 0 et 100 %.
 Exemple de liquides miscibles en toutes proportions : l'eau et l'éthanol.

Les liquides ne sont pas miscibles en toutes proportions.

Exemple: étude de la dissolution du phénol dans l'eau

Cette étude nous amène aux observations suivantes :

- lorsqu'on ajoute progressivement du phénol dans l'eau, on observe la dissolution du phénol et le mélange reste homogène jusqu'à un certain titre τ en phénol,
- lacksquare lorsque le titre atteind une certaine valeur au_m , il n'y a plus dissolution, mais on observe l'apparition d'une seconde couche liquide qui, contrairement à la première, renferme plus de phénol que d'eau : on dit qu'il y a saturation.

À noter

Le titre au_m augmente avec la température et pour des températures supérieures à une certaine valeur θ (température critique de miscibilité), les liquides deviennent miscibles en toutes proportions.

2. Électrolytes

Un électrolyte est une solution qui permet le passage du courant électrique.

L'étude de telles solutions conduit Arrhénius (Svante), chimiste et physicien suédois, en 1887 à postuler l'existence d'ions se déplaçant sous l'action d'un champ électrique \overrightarrow{E} qui règne entre deux électrodes. Il constata, par conséquent, qu'il y a transport de matière dans la solution : les cations (ions positifs) se déplacent vers la cathode et les anions (ions négatifs) se déplacent vers l'anode.

2.1. Conductivité d'un électrolyte

On rappelle les principaux résultats suivants.

Pour une solution contenant l'anion A^{x-} à la concentration C^{-} et le cation C^{y+} à la concentration C^+ et si S représente la surface des électrodes, on montre que l'intensité du courant qui traverse un tel électrolyte est donnée par :

$$I = \frac{dQ}{dt} = (C^{-}\mu^{-}z^{-} + C^{+}\mu^{+}z^{+})ES\mathcal{F}$$
 (6)

- μ^- et μ^+ representent les mobilités des ions, $\mu^- < 0$ et $\mu^+ > 0$;
- z^- et z^+ représentent les **valences des ions** A^{x-} et C^{y+} ;
- $\mathcal{F} = \mathcal{N}_A e$, appelé le faraday, représente la quantité d'électricité d'une mole d'électrons et vaut :

$$1\mathcal{F} = N_A e = 96\,500\,\text{C. mol}^{-1}$$
 (7)

Exemple

Solution contenant des ions K^+ et Cl^- : pour l'ion $K^+: z^+ = +1$ et $\mu^+ > 0$,

pour l'ion
$$Cl^{-}: z^{-} = -1 \text{ et } \mu^{-} < 0$$

pour l'ion $Cl^-: z^- = -1$ et $\mu^- < 0$ Solution contenant des ions Na^+ et $SO_4^{2-}:$ pour l'ion $Na^+: z^+ = +1$ et $\mu^+ > 0$,

pour l'ion
$$Na^+: z^+ = +1$$
 et $\mu^+ > 0$,
pour l'ion $SO_4^{2-}: z^- = -2$ et $\mu^- < 0$

Si on désigne par \overrightarrow{j} le vecteur densité de courant et par γ la conductivité électrique de la solution, on montre que :

$$\overrightarrow{j} = \rho^{-} \overrightarrow{v^{-}} + \rho^{+} \overrightarrow{v^{+}} = \sum_{i} \rho_{i} \overrightarrow{v_{i}}$$
(cas de plusieurs ions) (8)

Dans le cas de plusieurs ions, si on note par z_i la valence de l'espèce A_i , par C_i sa concentration et par μ_i sa mobilité, alors :

$$\overrightarrow{j} = \sum_{i} \rho_{i} \overrightarrow{v_{i}} = \gamma \overrightarrow{E} \text{ avec } \gamma = (\sum_{i} z_{i} C_{i} \mu_{i}) \mathcal{F} = \sum_{i} |z_{i}| C_{i} \Lambda_{i}, \mu_{i} \text{ et } z_{i} \text{ de même signe}$$

$$(\Lambda_{i} = |\mu_{i}| \mathcal{F} \text{ représente la conductivité molaire de l'ion "i"})$$
(9)

On peut aussi écrire :

$$\gamma = \sum_{i} \gamma_{i} = \sum_{i} |z_{i}| C_{i} \Lambda_{i}$$
 (10)

(la conductivité totale est égale à la somme des contributions de tous les ions)

Dans le système S.I. : γ s'exprime en S. m⁻¹, C_i en mol. m⁻³, μ_i en m². V⁻¹. s⁻¹ et Λ_i en S. m². mol⁻¹.

Exemple numérique

Des mesures conductimétriques donnent, pour l'eau pure, à 25 °C $\gamma = 5.5.10^{-6} \text{ S. m}^{-1}$.

L'eau pure contient, en plus du solvant, des ions $H_3O_{(\mathrm{aq})}^+$ et $HO_{(\mathrm{aq})}^-$ en quantités égales. La présence des ions résulte de l'ionisation partielle de l'eau, ce qui se traduit par l'équation :

$$2H_2O \rightleftharpoons H_3O_{(aq)}^+ + HO_{(aq)}^-$$

On donne les conductivités molaires ioniques :

$$\Lambda_{H_3O^+} = 350.10^{-4} \text{ S. m}^2 \cdot \text{mol}^{-1} \text{ et } \Lambda_{HO^-} = 198.10^{-4} \text{ S. m}^2 \cdot \text{mol}^{-1}$$

- 1. Quelles sont, à cette température, les concentrations en ions $H_3O_{(aq)}^+$ et $HO_{(aq)}^-$?
- 2. Quelle est la valeur de la constante d'équilibre K associée à l'autoprotolyse de l'eau?

Réponse

1. La conductivité γ est donnée par :

$$\gamma = \sum_{i} \gamma_{i} = \sum_{i} |z_{i}| C_{i} \Lambda_{i}$$

Comme $z_{H_3O^+} = +1$, $z_{HO^-} = -1$ et $[H_3O^+]_{eq} = [HO^-]_{eq}$, alors :

$$\gamma = |+1| \times [H_3O^+]_{\text{eq}} \times \Lambda_{H_3O^+} + |-1| \times [HO^-]_{\text{eq}} \times \Lambda_{HO^-} = [H_3O^+]_{\text{eq}} \times (\Lambda_{H_3O^+} + \Lambda_{HO^-})$$

soit:

$$[H_3O^+]_{\text{eq}} = [HO^-]_{\text{eq}} = \frac{\gamma}{\Lambda_{H_2O^+} + \Lambda_{HO^-}}$$

Numériquement :

$$[H_3O^+]_{\text{eq}} = [HO^-]_{\text{eq}} = \frac{5.5 \cdot 10^{-6}}{350 \cdot 10^{-4} + 198 \cdot 10^{-4}} = 1,00 \cdot 10^{-4} \text{ mol. m}^{-3},$$

soit $1.00 \cdot 10^{-7} \text{ mol.L}^{-1}$

2. La constante d'équilibre K associée à l'autoprotolyse de l'eau est :

$$K = [H_3O^+]_{eq} \times [HO^-]_{eq} = 1,00.10^{-14}, à 25^{\circ}C$$

■ 2.2. Électrolytes forts

Définition

On appellera électrolyte fort, tout électrolyte qui se dissocie totalement dans l'eau.

Exemple

La dissolution de $NaCl_{(s)}$ entraı̂ne une dissociation totale des cristaux solides $NaCl_{(s)}$ et on écrit :

$$NaCl_{(s)} \xrightarrow{\text{(eau)}} Na_{(aq)}^+ + Cl_{(aq)}^-$$

 \blacksquare De même la dissolution de la soude (NaOH), de la potasse(KOH) et du chlorure d'hydrogène gazeux (HCl) entraîne une réaction totale :

$$NaOH_{(s)} \xrightarrow[\text{(eau)}]{} Na^+_{(\text{aq})} + OH^-_{(\text{aq})},$$
 $KOH_{(s)} \xrightarrow[\text{(eau)}]{} K^+_{(\text{aq})} + OH^-_{(\text{aq})},$

et

$$HCl_{(g)} \xrightarrow{(eau)} H^{+}_{(aq)} + Cl^{-}_{(aq)}$$

À noter

Conclusion : dans un électrolyte fort, on ne trouve que des ions majoritaires (apportés par la dissolution du cristal ou de la molécule) et les molécules du solvant.

2.3. Électrolytes faibles

Taux de dissociation α

Dans ce cas, l'ionisation du soluté, ou la dissociation, n'est pas totale, on dit qu'elle est partielle. La solution contient donc les ions (apportés par l'ionisation du soluté), des molécules du soluté et celles du solvant.

Exemple

Si on ajoute de l'acide acétique CH₃COOH dans l'eau, il s'ensuit une ionisation partielle et l'on peut écrire :

$$CH_3COOH + H_2O = CH_3COO_{(aq)}^- + H_3O_{(aq)}^+$$

Il s'agit d'un équilibre chimique auquel on peut associer la constante d'équilibre, ou constante d'acidité,

$$K = \frac{\left[CH_3COO_{(aq)}^-\right]\left[H_3O_{(aq)}^+\right]}{\left[CH_3COOH\right]}$$

On définit le taux de dissociation α de l'électrolyte faible, par :

$$\alpha = \frac{\text{nombre de molécules dissociées}}{\text{nombre total initial de molécules introduites dans le solvant}}$$
 (11)

Ainsi, pour l'équilibre précédent, on peut écrire :

	$CH_3COOH + H_2O = CH_3COO_{(aq)}^- + H_3O_{(aq)}^+$			
État initial	C			
État final	$C(1-\alpha)$	excès	$C\alpha$	$C\alpha$

et par suite,

$$K = \frac{\left[CH_3COO_{(aq)}^-\right]\left[H_3O_{(aq)}^+\right]}{\left[CH_3COOH\right]} = C\frac{\alpha^2}{1-\alpha}$$

D'une façon générale, pour un soluté AB dissous dans l'eau, on peut écrire :